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Note 

orror Story about Integration 

Difference schemes for numerical integration can look simple and robust, yet 
have insidious features that bring their real utility into question. Two simple 
schemes are explored here, and each is applied to the problem of the physicA 
pendulum. One of the methods is symplectic, while the other gives rise to an attracting 
set, something forbidden for a bounded Hamiltonian system iike the pendulum. The 
contrast provides a vivid example, useful for didactic purposes. that illustrates the 
need for care in matching integration methods to proh!ems. 

The first of the two systems is the time-centered leapfrog: 

and the second is a simple predictor-corrector: 

sp = s,, + Tu II 3 

u,+,=u,+~(.f(I,,)+.f(X~i), :5: ~-; 

Momenta per unit mass (velocities in Cartesian coordinates) are denoted by $4, 
coordinates by X, forces per unit mass (accelerations) by .fi and F is used for the 
integration timestep. Values at the old timestep are denoted by jr, those at the new 
by I: + I, and at the predicted position by p. The use of superscripts in one situation 
and subscripts in the other conforms to standard usage in gravitational problems, 
The leading error term is O( T3) with either method. The time-centered leapfrog has 
been widely used in both plasma and gravitational n-body problems, and the 
predictor-corrector has been used for some gravitational problems. The leapfrog 
was introduced into gravitational problems [ 1, 21 as a means of coping with the 
chaotic property of those problems [3,4] because it is reversible and it has an 
exact Liouville theorem. Both schemes generalize to three dimensions by regasdng 
x, M; and f as vectors, 
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ARE THESE METHODS SYMPLECTIC? 

An integration method is said to be symplectic if the state of the system following 
an integration step could have been reached from that before the step by some 
canonical transformation. This is important because Hamiltonian systems are not 
structurally stable in the mathematical sense: an arbitrary displacement in the 
phase space need not be consistent with the Hamiltonian equations. 

The most succinct way to test whether a method is symplectic is to verify the 
Poisson-bracket relations between the before and after states. Those relations may 
conveniently be written in matrix form as follows 15, 61. Let the Jacobian matrix 
that leads from “before” to “after” be 

In an s-degrees of freedom problem, M is of dimension 2s x 2s; it is simply 2 x 2 for 
present purposes. Introduce now the matrix constructed of four blocks, 

where I, is the s x s identity and 0, is an s x s matrix all of whose elements are zero. 
The matrix M is symplectic (as is the transformation it represents) if 

MTJM = J, (3) 

and the corresponding transformation is canonical. The superscript T denotes 
matrix transpose. 

A bit of writing can be saved for the present case (s = 1, 2 x 2 matrices) with the 
notation 

M= 
then MTJM = J(AD - BC), so the transformation is symplectic if det /MI = 1. 
(Warning: this works onZ3: for s = 1, 2 x 2 matrices!) Also denote rifldx evaluated at 
the point x0* by J”(x’“‘). 

The leapfrog gives 
ax01 + 1 ) 

A=-----= 
dX(“’ 

1 + FJ’(x’n’), 

B= 
axP+l) 

&p ~ I/2) = T, 

c= 

&Jn + 1,‘2) 

l?xcn J 
= Tf’(x’“‘), 
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from which it is clear that the method is symplectic for any differentiable,?“‘. The 
fact that momenta and coordinates are associated with different physical ti 
not important for this formal manipulation. The leapfrog is also symplectic in three 
dimensions. 

The predictor-corrector, Eq. (2) is a little more complicated. Forces are 
evaluated at two different places (and times): at I,, and at .yP = I,, + II,? IF. Hntroduce 
the notations, F=f’(x,). G =f’(s,, + ZL;, T), and let 5 = ‘c/2. Then 

&4 
C=nfl= t(F+ G). 

Lh,, 
1 

D= 

which, after a little algebra, gives 

AD-BC= 1 +t’(G-s”), 

This requires either r = 0 (undesirable because it means zero timestep) or G = F (or 
both) in order to have AD - BC = 1, as required for a symplectic method. The con- 
dition, G = F, says f’(~,,) =f’(~~ + ~4, T), or that the derivative of force by position. 
at the two different places (and times) must be the same. That condition requires 
something no more complicated than a harmonic oscillator force law. Ji^= -g : the 
predictor-corrector is not symplectic for more general force laws. 

0th the predictor-corrector and the leapfrog integrate the harmonic osclilator 
exactly in the sense that .I?) = Xcos(nQT), inserted into either scheme, along with 
I”= -k.u satisfies the scheme exactly with 

T’k = 4 sin’(RT.2). 

The integration becomes unstable for T’k > 4. A second independent solution, with 
the same stability limit, is obtained with the substitution .PJ = XsinjrrQT). 

A problem somewhat more complicated than the armonic oscillator is needed 
to explore differences between the two methods. The physical pendulum provides 
such an example. 

THE PHYSICAL PENDULUM 

The physical pendulum has two fixed points: that with the pendulum at rest 
pointing down is stable while that with it at rest pointing up is unstable. 
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plane is well known: the neighborhood of the stable fixed point looks like a 
harmonic oscillator. Low-energy orbits are confined to this neighborhood. A pair 
of separatrix trajectories crosses at the unstable fixed point. Orbits with energy 
greater than that of the separatrix rotate: the pendulum zips past the vertically 
upright position and continues in the same direction. The phase space lies on a 
cylinder, periodic in angle and unbounded in angular momentum. 

The force for the physical pendulum may be written, T’f = K sin 0 with K> 0, 
so 6= 0 when the pendulum points upward. This strange convention makes the 
notation conform to the literature. Change the notation a bit more, using I,, 
for Td”- lizJ and so on, and the leapfrog takes the form, 

I n + L = I,, + K sin 0,1, 

I9 ,1 + 1 = 6, + I,, + , . 
(4) 

This system will be recognized as the standard, or Chirikov, map familiar from 
chaos theory [7]. The physical pendulum is a useful example because its difference 
form (the Chirikov map) has been so well studied. 

The angle, 8, can be reduced modulo 27c, and the second of Eqs. (4) implies that 
I can be similarly reduced for most purposes. The phase plane extends over (0,2rc) 
in both 8 and I. This map has some strange and well-known properties. Plots are 
shown in Lichtenberg and Lieberman [7] for several different values of K. Its 
important features are (1) it is area-preserving (e.g., no attractors), even though 
orbits may break up and become stochastic, and (2) it has two fixed points that 
correspond to those of the pendulum: a stable fixed point at 6’ = rr, I= 0 (pendulum 
at rest pointing down, stable for K<4) and an unstable fixed point at Q=O, I=0 
(pendulum at rest pointing up). In addition, it has a pair of (stable) period-2 fixed 
points at f3 = 0, I= n and at 8 = 71, I= 7~. These are of interest to compare to the 
map that follows from the predictor-corrector. Additional fixed points of higher 
order can appear at certain amplitudes, those for which the integrator just happens 
to produce periodic orbits. These are not important for present purposes. 

The predictor-corrector difference equations for the physical pendulum become 

ep=e,+l,, 

I ,z + 1 = I,, + t (sin e,, + sin @,), 

8 .+l=Rz+t(L+L+d. 

(5) 

This system was explored computationally. Plots showed a systematic drift toward 
I= rr, which suggested a closer look at that neighborhood. If I= 7c, 8, becomes 
19,~ + rc (reduced mod 27r) in the first line, so (sin 8, + sin fl,) = 0 identically and 
finally 0,, + i = 8, + rc = Qp for any value of 8, whatsoever. Thus every point on the 
line, I= n, is a period-2 fixed point whatever the value of K. There is an infinite 
number of period-2 fixed points on that line. This is quite different from the 



Chirikov map, which has only two fixed points at I = 71. The line of fixed points cuts 
the phase plane into two parts. 

kook at motions near one of these fixed points in first orders Pick some value fo:: 
6=a, say, and take I= n. Describe the departures by O,,=X+& jii=x +t. Then 
6 P = E + 6 + K + E, so sin 8,! + sin 6, = --E cos CI to first order in 6 and E. Ne:v values 
of 6 and E may be obtained by multiplying the original vaiue- -5 ‘by the matrix (ivii;EL 
the E in the t! term omitted): 

Two steps should be used to return to the neighborhood of the starting poin:. On 
a second step, the same matrix applies but the cos r;! terms change sign because x 
must be replaced by c( + 71. The result of both steps is obtained from the matrix 
product ! + signs on the left. - signs on the right) to yield 

i5) 

This last matrix has one eigenvalue equal to one and the other less than unity~ The 
decreasing direction corresponds to motions toward the line 1= TL indicating that 
that line is an attracting set. It is not a strange attractor. 

Numerical checks suggest that the entire domain is a basin of attraction toward 
the attracting set. In evaluating numerical integration methods, the number of 

2n 

I 

FIG. 1. Standard (Chirikov) map iterated 128 times wi:h K=O.j. 
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2n 

I 

FIG. 2. Predictor-corrector map iterated 128 times with K=0.5 from the same starting condition 
used for Fig. 1. 

integration steps required to reach the attractor is important. It tells how long an 
integration may be carried on before significant error builds up. Ten or twenty 
integration steps cause appreciable drift toward the attracting set over much of the 
(0: 1) plane. Near the two fixed points of the pendulum, at 8 = rc, I= 0 and at 0 = 0, 
I= 0, the force field is asymptotically harmonic and the integration is much better. 

These difference schemes may be iterated over and over. We show in Figs. I and 
2 a comparison of results obtained in 128 iterations of the Chirikov map (Fig. 1) 
and of the predictor-corrector (Fig. 2). Both maps started with 64 points equally 
spaced along a line at 0 = 71 and extending from 0 to 2n in I. The plot shows all 128 
images of each of the 64 points. Very little evidence for the integrability of the 
underlying physical problem remains in Fig. 2, although it is quite apparent in 
Fig. 1. The empty band near the attracting set in Fig. 2 results from the short run 
and the starting condition used. It fills in if the map is iterated more times. 

Migration toward the attracting set is slower with shorter timesteps. The 
constant K goes as T" for shorter timesteps, and the matrix (6) shows that points 
near the attracting set move closer by an amount depending on K2 (proportional 
to T4) per integration step. Since more integration steps are needed to reach a given 
physical time with shorter timesteps, those points move closer by an amount 
depending on T3 in a given physical time interval. The attracting set remains, 
however. It simply takes a bit longer to produce catastrophic results. 

COMMENTS 

The character of the problem has changed completely in going from the physical 
problem to the predictor-corrector because there is an attracting set in the phase 
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space represented by the predictor-corrector. Three levels have been investigated. 
First, the physical problem is Hamiltonian. It cannot have any attracting ES. 
Next we antegrate that by the leapfrog, which is symplectic, and still there are no 
attracting sets. But an attracting set appears at the third level when it is integrated 
by the predictor-corrector. An essential part of the physics has been lost. Since both 
methods arc correct through O( T’), it is clear that higher-order (ignored) terms 
have conspired to produce the attractor. A sympfectic method, with a consequer.t 
Eiouville theorem, tries to guarantee that that particular phenomenon wi:iil not 
occur. 

Symplectic difference methods have been of some interest in recent years [E-%9] 
and faithful rendering of invariant curves is presented as evidence that rhcse 
methods perform better than their conventional competitors. We see kre thst 
difference methods usually perform better near invariant curves than else-where and 
that faithful rendering in regions far from fixed points or invariant curves can 
provide a more stringent test. Symplectic methods may, in fact, represent more of 
an improvement than implied from the test results presented. ~J~fort~~~te~:~~ =ne 
rarely knows what the motion should be far from fixed points or invariant curves 
in examples more complicated than the physical pendulum. 

Symplectic methods are usually derived from a generating function [S-IO]. We 
derived the time-centered leapfrog from a variational principle jHamilton’s ~rincipic j 
and the ease of obtaining time-reversible and symplectic methods by that route was 
stressed by Miller and Prendergast [ 1 ] and again by MilIer [2]~ An exact Eiouviik 
theorem was emphasized in those papers. 

The result displayed here with the predictor-corrector is unusual in the sense that 
a given method performs differently with different problems. The predictor-corrector 
performs well with the harmonic oscillator, but it yields unphysical resuhs with the 
physical pendulum. The two problems seem quite similar from a numerical pomr of 
view. This feature of numerical methods, a sensitivity to the problem with which rhe 

method is to be used, need not sho=w up by conventional means of analyzing the 
stabihty of numericai integration methods. Something more than mere smoo:hness 
and differentiability are required. It does, however. show up in ehc check for a 
sysnplectic method, which takes the actuai forces into account. This is bi;t *c; yie 
example of bizarre effects that can arise in numerical treatment of simp’ae dynamical 
systems. Friedman and huerbach [Ii, 121 show some other effects. 

The predictor-corrector provides an example that shows how methods that iookr 
rehable can lead to unphysical predictions. Extreme care is needed in long or fish 
integrations. And an integration can be fussy even though it appears qune 
straightforward. Who would have thought that the pb- Ij?sical pendulu23 VJould 
hdxx su.ch surprises? 
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